59 research outputs found

    Motif Discovery through Predictive Modeling of Gene Regulation

    Full text link
    We present MEDUSA, an integrative method for learning motif models of transcription factor binding sites by incorporating promoter sequence and gene expression data. We use a modern large-margin machine learning approach, based on boosting, to enable feature selection from the high-dimensional search space of candidate binding sequences while avoiding overfitting. At each iteration of the algorithm, MEDUSA builds a motif model whose presence in the promoter region of a gene, coupled with activity of a regulator in an experiment, is predictive of differential expression. In this way, we learn motifs that are functional and predictive of regulatory response rather than motifs that are simply overrepresented in promoter sequences. Moreover, MEDUSA produces a model of the transcriptional control logic that can predict the expression of any gene in the organism, given the sequence of the promoter region of the target gene and the expression state of a set of known or putative transcription factors and signaling molecules. Each motif model is either a kk-length sequence, a dimer, or a PSSM that is built by agglomerative probabilistic clustering of sequences with similar boosting loss. By applying MEDUSA to a set of environmental stress response expression data in yeast, we learn motifs whose ability to predict differential expression of target genes outperforms motifs from the TRANSFAC dataset and from a previously published candidate set of PSSMs. We also show that MEDUSA retrieves many experimentally confirmed binding sites associated with environmental stress response from the literature.Comment: RECOMB 200

    Evolutionary Algorithm Based on New Crossover for the Biclustering of Gene Expression Data

    Get PDF
      Microarray represents a recent multidisciplinary technology. It measures the expression levels of several genes under different biological conditions, which allows to generate multiple data. These data can be analyzed through biclustering method to determinate groups of genes presenting a similar behavior under specific groups of conditions. This paper proposes a new evolutionary algorithm based on a new crossover method, dedicated to the biclustering of gene expression data. This proposed crossover method ensures the creation of new biclusters with better quality. To evaluate its performance, an experimental study was done on real microarray datasets. These experimentations show that our algorithm extracts high quality biclusters with highly correlated genes that are particularly involved in specific ontology structure
    corecore